Plant releases its pollen in the full moon

first_img Click to view the privacy policy. Required fields are indicated by an asterisk (*) Full moons are often thought to be a catalyst for romance. Something about that dim white light in the dark sky has for centuries inspired humans to compose sonatas, paint pictures, and explore the cosmos. But it seems we’re far from being the only organisms inspired by the moon’s beauty. A new study, published online today in Biology Letters, suggests that a small scrubby shrub called Ephedra foeminea releases its pollen only when the moon is full.Found on cliffs, ravines, and bare rocks from Italy to Yemen, Ephedra is a gymnosperm, meaning, like pine trees, it houses its reproductive structures within cones. Some varieties depend on wind to spread its pollen around, but others form pollen drops to attract flies and moths. What scientists didn’t know was precisely when—or how—insect pollination took place.The realization that E. foeminea waits for the full moon came almost by accident. In the summer of 2014, Stockholm University botanist Catarina Rydin and her team traveled to the Balkans to study why some lineages of the plant had switched from wind to insect pollination. But they arrived too early in the summer and couldn’t find any actively pollinating plants. Looking over past records and other literature, Rydin realized that many pictures of the plant’s pollen-laden droplets oozing out from their tiny cones were beautifully lit by moonlight. “I am not sure why, but all of a sudden we experienced a eureka moment!” she says. Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe Just a few weeks later, on the night of a full moon, E. foeminea shrubs in the study area began to release drops of pollen-rich fluid. The sugary liquid is especially attractive to a host of nocturnal flies and moths, many of which are known to navigate using the polarized light from the moon. Rydin and her team thus speculate that Ephedra evolved to release its pollen when the moon was brightest so that its pollinators could be as efficient as possible. “It’s an interesting study. I think that there’s a clear correlation there,” said Chris Cutler, an entomologist at Dalhousie University, Halifax, in Canada.The researchers then went back to analyze historical data on E. foeminea’s pollination periods in previous years and compared them with lunar cycles from the same year. After controlling for fluctuations in temperature and precipitation, the team found that 2014 was not an anomaly: The shrub appeared to be consistently entering its weeklong pollination phase on the night of the full moon in July. To further bolster their theory, the team looked at species of Ephedra that are pollinated by wind and discovered that these close relatives did not appear to sync their pollination phases with the lunar cycle.It seems odd that a plant would forego pollination opportunities while waiting for the moon to reach its maximum size, and indeed, full-moon pollination has garnered justified skepticism before. But Rydin points out that the cost of producing pollen is high enough that Ephedra might conserve energy for the July full moon, which stays in the sky longer than partial moons. “We think it is all about maximizing the efficiency, not only regarding the preciseness of pollinator navigation and attraction to the cones, but also in terms of number of efficient dark hours. Only at full moon do the insects have a moon to navigate by during the entire night.”How the plants sense the full moon remains a mystery, but Rydin’s early guess is that they are actually aware of the minute differences in tidal force that the moon exerts on Earth. The moon’s orbit is elliptical, meaning that at some points it’s closer to our planet than others, causing its gravitational pull to fluctuate ever so slightly. How the plants might perceive such miniscule forces is unknown, but Rydin hopes to get a chance to investigate further. Likewise, an investigation into the insect species might help shore up the findings. “I think what’s needed next is to find what the insect fauna is in those habitats and if they have cyclic activity with full moons. That’s the missing link so far with the paper,” Cutler says.The other possibility is that Ephedra is detecting the moonlight itself. But this theory presents its own challenging questions. How does the plant differentiate between moonlight from an almost full and a truly full moon? What happens if it’s cloudy on the night of the full moon in July? Oddly enough, the second question is hard to answer using historic data because the weather in Ephedra’s distribution region is so mild, and cloudy summer nights are so rare.Whatever the case, the result is spectacular: Amid the moon’s cool glow, thousands upon thousands of silvery droplets coalesce on Ephedra’s cones to reflect the moonlight into the compound eyes of passing insects, signaling the start of a weeklong feast for the arthropods and another mating season for E. foeminea.*Correction, 2 April, 1:07 p.m.: An earlier version of this article stated that Ephedra was a flowering plant, when, in fact, it is a gymnosperm.center_img Sign up for our daily newsletter Get more great content like this delivered right to you! Country Emaillast_img